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Abstract
This report describes the results of a Laboratory-Directed Research and Development
project on techniques for pattern discovery in discrete event time series data. In this
project, we explored two different aspects of the pattern matching/discovery problem.
The first aspect studied was the use of Dynamic Time Warping for pattern matching in
continuous data. In essence, DTW is atechnique for aligning time series along the time
axis to optimize the similarity measure. The second aspect studied was techniques for
discovering patternsin discrete event data. We developed a pattern discovery tool based
on adaptations of the A-priori and GSP (Generalized Sequential Pattern mining)
algorithms. We then usad the tool on three different application areas — unattended
monitoring system data from a storage magazine, computer network intrusion detection,
and analysis of robot training data.
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1 Introduction

This report describes the results of a Laboratory-Directed Research and Devel opment
project which explored techniques for pattern discovery in discrete event time series data.
The original motivation for the project was based on observed challengesin analyzing
data from network-based sensor-driven monitoring systems. An example of such a
system is one of the unattended monitoring systems fielded by the International Security
Programs Center to monitor the status of high value assets and processes, particularly
with respect to international nuclear material safeguards, nonproliferation, and
transparency. In these applications, the purpose of the monitoring system may include
detecting intrusion into a secured area, verification that known processes are occurring as
expected, and detection of diversion of nuclear material. Another example of such a
system is a network intrusion detection system used to monitor computer network
communication traffic and user sessions.

Analysis of data from such systems requires identifying and classifying patterns in the
sensor data and interpreting them in terms of the expected activities or allowed activities.
A key issue from an operational perspectiveisthat it is not feasible to have a human
perform all of the analysis. A simple approach to automating the analysis is to identify
patterns, classify the patterns as normal (or alowed, expected, etc.) and abnormal (or
suspicious, unauthorized, etc.), and use pattern- matching algorithms to identify and
classify observed behavior. Most network intrusion detection tools follow this approach.
A finite state-machine based pattern detection approach has been successfully
implemented as the Knowledge Generation software tool and demonstrated in nuclear
material safeguards and transparency applications. [1][2][3] However, pattern detection
tools generally cannot discover new, unknown patterns in the data. New tools are needed
that are capable of pattern discovery — that is the identification of new patterns in the data
whether those patterns represent normal activity or whether they are indicative of
unauthorized, anomalous activities.

Data mining is a process for finding useful information from large data sets that involves
acollection of algorithms and techniques for finding and categorizing patterns in data.
[4][5] The techniques fall into several broad categories including rule discovery, the
testing of patterns hypothesized by a user; rule induction, the automated extraction of
patterns in the data; regression, the detection of patterns in continuous data; deviation
detection, the detection of deviations from established or normal behavior; and
classification, the categorization of datarecords or patternsin the data. [4] In essence, the
pattern discovery problem we addressed in this LDRD is a data mining problem. While
each of the categories listed above is important for automating analysis from unattended
monitoring systems, we focused our efforts primarily on rule induction and rule
discovery techniques.

In common commercia applications, data mining is directed toward discovering

associ ations between attributes of an object and selecting associations which are useful in
predicting some desirable or undesirable outcome. The “dimensionality” of the data
refers to how many attributes (fields) are available for each object (record). Sensor data
differ from commercia enterprise data in three significant ways.
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1. Thedata are of low-dimensionality. Sensor data generally consist of the time of
the event and a value for the event. While spectral and hyperspectral data can
have high dimensionality, simpler sensors (i.e., temperature, voltage, etc.) do not.

2. Some data may be continuous rather than discrete. Data mining techniques
generaly apply to discrete data, so methods for discretizing the continuous data
are needed. One approach is to bin the data. Another approach is to ssgment the
data and flag the segment end-points as potential key events. We favor the latter
approach since it matches the discrete event nature of the other sensors in the
monitoring systems.

3. Thetime ordering of the data is significant. The pattern discovery techniques will
need to extract information from data based not only on its order, but also based
on the delay between events — considering both time-out as well as time-in events.

As aresult of these differences, commercial data mining applications are not suited for
finding sequence-based patterns in time-ordered data, although commercial applications
can be useful for characterizing normal behavior based on time of day or day of week.

After initial exploration of the capabilities of commercia systems, this LDRD focused on
developing algorithms for discovering sequence-based patterns. The test data we had
contained data from both discrete sensors (e.g., door switches or breakbeams) and analog
sensors reporting continuous-valued quantities (e.g., radiation levels or temperature). The
different types of data (continuous vs. discrete) require different algorithms. As aresult,
there were two major thrusts to the LDRD. The first aspect studied was the use of
Dynamic Time Warping (DTW) [6][7][8][9][10] for pattern matching in continuous data.
In essence, DTW is atechnique for aligning time series along the time axis to optimize
the similarity measure. The second problem was the discovery of patternsin discrete
event data. We developed a Pattern Discovery Tool based on adaptations of the A-priori
[11] and GSP (Generalized Sequential Pattern mining) [12] algorithms. We then used the
tool on three different application areas — unattended monitoring system data from a
storage magazine, network intrusion detection, and analysis of robot training data.

The report is organized as follows: Chapter 2 describes other data mining work,
particularly in the DOE complex. Chapter 3 describes the DTW algorithm and its
application to pattern matching with continuous data. It also compares the DTW
algorithm to another technique for describing time series data, Hidden Markov Models.
Chapter 4 describes the general approach to pattern discovery in sequential data while
Chapter 5 describes the Pattern Discovery tool and its applications.

10



2 Related Work

In this section, we examine several relevant major efforts in data mining at three DOE
laboratories in the nuclear weapons complex (NWC).

High-resolution ssimulations, such as those used in the ASCI program, can generate
terabytes of scientific data, which is much too voluminous for a human to aralyze by
hand. Severa efforts within ASCI seek to explore data mining techniques to sift through
the data and isolate the smaller, more manageable portions of interest for detailed
analysis. Tools from these efforts analyze the data by identifying patterns, either
automatically, or through interaction with the user. A pattern in the ASCI context can be
anything from a sequence of “interesting” regions in mesh data to statistical similarities
between characteristics of regions of interest to recurring relations among arbitrarily
complex objects in the domain. We describe three of these data mining efforts below,
namely Pattern Discovery in Scientific Data, AVATAR, and Feature Characterization in
Scientific Datasets. In addition, below we describe related efforts in computer network
intrusion detection, where it is desirable to discover anomalous patterns in network
traffic, and we describe the VxInsight effort which graphically displays datain a
geometric vicinity based on similarity metrics.

2.1 Pattern Discovery in Scientific Data

Karypis and Kumar [13] are developing clustering algorithms and pattern discovery
approaches to operate on turbulent fluid flow and structural mechanics simulations. In
their approach, higher order objects that correspond to interesting structures (such as
vortices in flow simulation data) obtained from feature extraction are analyzed by the
clustering and pattern discovery algorithms. The results of this analysis provide the user
with high-level information that will assist in the processing and understanding of the key
relationships in the simulation data. Of particular relevance to this LDRD project is the
work in the discovery of frequent patterns.

2.1.1 Hierarchical Clustering

Clustering scientific data can be challenging due to the large volume of high-dimensional
data. In addition, existing clustering algorithms are designed to use fixed metrics that
limit their applicability to scientific datasets. For example, the K-means algorithm uses a
fixed distance metric to cluster data around centroids. Such a metric is inadequate if one
needs to cluster higher-order features such as vortices or cracks. To address this problem,
recent work in hierarchical agglomerative clustering can be applied using dynamic
metrics to measure the similarity between clusters. The use of dynamic metrics facilitates
the discovery of natural and homogenous clusters of high-level objectsin scientific data.
A drawback of hierarchical agglomerative clustering is that the runtime tends to be O(rf),
which can be unacceptable given large scientific datasets. This work investigates an
approach based on data summarization [14] to limit the volume of data to be clustered
while still yielding high-quality clusters, leading to a scalable solution.
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2.1.2 Pattern Discovery

The discovery of frequent (or infrequent) patterns among objects in the dataset is an
important problem in data mining. Karypis and Kumar[13] define a pattern as arecurring
relation among objects, with an importance determined by how frequently it occurs
(support level) and how indicative its occurrence is of a certain outcome (confidence
level). Patterns that have a high confidence level are very important because they can
provide an accurate prediction. The support of a pattern is also important, as patterns that
do not occur frequently may be spurious. On the other hand, Karypis and Kumar[13]
note that sometimes infrequent patterns can be very important, and the challenge is to
distinguish infrequent important patterns from other spurious patterns. Thisisidentical

to one of the problems faced by this LDRD project — the isolation of important infrequent
event patterns that indicate an anomaly in system operation or unauthorized bunker
activity. Inthiswork, Karypis and Kumar propose to build on their previous work in
temporal patterns [15], which uses a directed acyclic graphto specify allowed
relationships among the objects in patterns, facilitating the discovery of arbitrarily
complex tempora patterns. They also plan to extend this framework to include spatial
predicates to find spatio-temporal patterns.

2.2 AVATAR

The goal of the AVATAR project [16] isto capture what the user thinks are interesting
patterns in the dataset during the visualization of scientific simulation results, and use this
information to automatically point the user to similar interesting data in other regions or
in another dataset. The approach can be broken into three primary steps. 1) User-driven
pattern discovery through a modified version of the MUSTAFA visuaization tool, 2)
Learning, and 3) Pattern detection. User-driven pattern discovery is akey concept
embodied in the Sequence Pattern Discovery Tool developed in this LDRD project.

2.2.1 User-Driven Pattern Discovery

To capture interesting patterns in the data, the MUSTAFA visualization tool was
modified to allow the user to draw arectangle over regions in the current view and |abel
the underlying mesh nodes in these regions as Very Interesting, Interesting, Probably
Interesting, or Not Interesting. Unlabeled portions of the data were subsequently labeled
as Unseen low or Unknown. The labeled data containing the user-discovered patternsis
saved to a file, where each mesh node contains the original fields that hold the physics
variables etc., in addition to a new field that holds the label.

User Selects Region
User-Discovered Patterns

Capture
toflat file {x11,x12,x13,x14,x15}: Interesting
E—

{x91,x92,x93,x94,x95}: Interesting

Figure 1. Capturing user-discovered patterns
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2.2.2 Learning

The learning process consists of inducing a decision tree on the user-discovered patterns.
A parallel approach is needed since the user-discovered patterns can consist of very large
amounts of data. The challenge isto build a parallel decision tree inducer that does not
decrease in accuracy as the dataset scalesin size. The simple, yet effective solution
developed was to partition the datainto N digoint (or overlapping) subsets, and place one
subset on each of the N processors of the parallel machine. Each processor then invokes
the C4.5v8 algorithm [17][18] to construct a decision tree independently of the other
processors. This eliminates the need for inter-processor communication during tree
induction. Each decision treeis saved and distributed to the other N-1 processors for
pattern detection.

2.2.3 Pattern Detection

After tree induction, each processor has all N induced decisiontrees. To detect patterns
in new data (i.e. to classify the data), it is partitioned among the available processors, and
each processor runs its portion of the data through all of the decision trees and uses a
majority vote of the results to determine the final classification of each piece of data.
This simple, scalable process was shown to have similar accuracy to the serial version of
the algorithm. A weighted voting scheme was also considered; however, results did not
show an improved accuracy over the simpler mgjority voting scheme. Currently, the
AVATAR system runs on ASCI Red and ASCI Blue utilizing MUSTAFA and Exodus
datasets. A large example, consisting of 800,000 training examples on each of 64
processing nodes (51,200,200 examples) was completed on ASCI Red in 2.5 hours. The
key barrier to scalability of the parallel classifier isthe limited parallel 1/0 capability of
ASCI Red.

2.3 Feature Characterization in Scientific Datasets

Like the Pattern Discovery in Scientific Data project, the FCDMF (Feature
Characterization using Data Models and Formats) project [ 19] seeks to develop methods
to mine higher-level objects from scientific simulation results. A hierarchical feature
ontology is used that contains a base layer of objects that violate basic continuity and
smoothness assumptions, and layers of higher-order objects that violate laws of specific
domains. This ontology is used to mathematically describe and characterize features
automatically, so the analyst can focus on the important regions that require close study.
This effort relates to our LDRD project in that it develops a data analysis tool, much like
the devel oped Sequence Pattern Discovery Tool to aid the user in discovering interesting
patterns by performing automatic and user-directed computations on the data.

2.3.1 Data Format

When constructing a general-purpose toal, it is important for the tool to be able to read
and write datain common formats. The FCDMF project addressed this issue by
constructing the tool around the SAF [20] data format. SAF provides for the flexible
representation of awide variety of scientific data by incorporating metadata (or data
about data) as part of the format. At any level of abstraction, computed features can be
stored along with the raw mesh data as part of the metadata. The SAF libraries provide
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for the automatic trandation between different types of data to facilitate its use by various
different tools.

2.3.2 Features as Patterns

The base ontology which forms the core of the feature set used by FCDMF consists of
features, or computable patterns in the scientific data, that express the violation of the
continuity and smoothness assumptions that are intrinsic to the laws of physics and
numerical smulation. These base features include cracks, spikes, tears, wrinkles, etc.
Higher levels of the feature ontology, which are constructed from component features in
the base level, include features that express the violation of higher-level physical laws,
such as the contact problem, where normal forces between two surfaces in contact deviate
from being equal and opposite.

This hierarchical pattern relationship is not unlike the construction of larger patterns from
subsequences of tokens in the Pattern Discovery Tool. In both cases, the interesting
patterns are those that do not occur frequently. For example, the Pattern Discovery Tool
may be used to isolate an infrequent token sequence indicating an unauthorized access
event, and the FCDMF agorithms can be used to identify single deviations in large sets
of scientific data, such as a spike in temperature at a hot point.

2.3.3 Framework Algorithms

To compute the various features in the feature ontology, a set of algorithms were
developed as feature building blocks:

- Normas(): takes a SAF dataset and computes the unit-length normal vector to
each element of the mesh.

- Topologica-neighbors(): takes a SAF dataset and an individua mesh element, m,
and returns alist of mesh elements that share an edge or vertex with m.

- Geometric-neighbors(): takes a SAF dataset, and individual mesh element, m, and
aradius, r, and returns alist of mesh elements whose vertices are within the
Euclidean distance of r from m.

- Statistics(): takes a SAF dataset and a specification of one variable (either amesh
coordinate or a physics variable), and computes the maximum, minimum, mean,
and standard deviation of its values.

- Displacements(): takes a SAF dataset and finds all topologically neighboring pairs
of vertices, measures the xyz distance between them, and reports the maximum,
minimum, mean, and standard deviation of those distances.

In addition to these algorithms, other fundamental vector calculus computations are
provided in the FCDMF framework. The Pattern Discovery Tool also contains a set of
algorithms to construct, compare, and filter patterns, either automatically, or under user
control. These are manifested in the various menus and pop- ups in the user interface.

2.4 VxInsight

VxInsight is a knowledge management and visualization tool for discovering
relationships within large databases [21]. Rather than invoking standard clustering
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algorithms and displaying the data to the user, VxInsight instead computes a similarity
metric on the data and displays data points for each datum, where data appear
geometrically closer to each other in the visual display as their similarity value increases.
The underlying concept is to use the human’s exceptiona ability to visualize patterns,
relationships, trends, and anomalies. Datais displayed as points on a 3D landscape.
Mountains in the landscape indicate data that are smilar to each other, and the height of
the mountain indicates the density of the datain that region. Intuitively, the user can
navigate the data landscape much like one would navigate a 3D map of a geographical
region. VxInsight [21] claims to improve on similar visuaization tools, such as SGI’'s
MineSet [22], by providing dynamic peak labels to provide navigational guidance
through the data landscape. The Pattern Discovery Tool is similar to VxInsight in the
context of providing user-directed pattern discovery.

VxInsight allows the user to navigate through the data and visually idertify and explore
patterns in the data through color or topology, while the Pattern Discovery Tool
developed in this LDRD presents a preliminary set of patterns to the user which can be
filtered, merged, and extended through interaction with the tool to isolate interesting
patterns in a user-determined dlice of the data.

2.4.1 Computing Object Similarity

The specific function used to determine similarity between data objects in VxInsight is
dependent upon the domain of the data. For example, the metric could be based on
common keywords in documents, identical vocabulary within documents, citation links
between scientific papers or patents, direct links in web documents, financial transaction
links between corporations, or membership in common organizations among individuals
[21]. The general function maps object pairs to non-negative real numbers. The greater
the similarity between the two objects, the larger the number returned by the similarity
function.

Similarly, patterns identified in the Pattern Discovery Tool are compared based on the
similarity of the representative token sequence string. Three component metrics are used
to compute the similarity value of the two strings based on relative character position, the
number of missing characters, and the difference in length of the strings. These metrics
are normalized and combined to generate an overall similarity metric whose range is
from 0.0 to 1.0. The higher the normalized value, the more similar the strings, and
therefore, the more similar the token sequence patterns. So both VxInsight and the
Pattern Discovery Tool quantify similarity by mapping it to non negative real numbers.

2.4.2 Navigating Science

The primary application and the chief motivation for the development of VxInsight isto
determine what scientific efforts to support with research funding to yield the greatest
impact [22][23]. To help do this, VxInsight was used on a database of scientific papers
whereinitial similarity was based on citation content. VxInsight was used to determine
where a particular body of work originated, how it has evolved in the past, and the trends
for future research. VxInsight has also been applied to study nuclear proliferation [24].
The structure of nuclear technology literature was first visualized, then used with text
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analysis tools to determine similarities between papers and public sources discussing
nuclear technologies. Analysts were thenable to track down potentially sensitive
information using VxInsight as a form of intelligence gathering tool. Other applications
of VxInsight include: 1) exploring citation indices to identify similar effortsin the
laboratories and in industry and point to areas of possible collaboration, 2) detecting
Medicaid fraud, 3) counter-terrorism intelligence, and 4) characterizing the nature of
patent citations.

2.4.3 Moving Forward

From the above discussion of related work at three DOE laboratories in the NWC, we
note that the work in this project is similar to and applicable to many of the related works,
but yet is distinct in the problems addressed in pattern discovery. In particular, we
address the problem of how to automatically discover patterns in event sequerce data.

In the next section, we discuss our initia investigation of two similarity mechanisms,

Dynamic Time Warping, and Hidden Markov Models, which were explored early in this
project as possible solution approaches.
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3 Dynamic Time Warping and Hidden
Markov Models

As noted in the introduction, the test data we had was a mixture of measurements of
continuous- valued quantities and discrete events. In order to automate analysis of this
data, the two types of data must first be placed on an equal footing. The approach taken
in the Knowledge Generation software is to extract key features from the measurements
of continuous-valued quantities that can be mapped to significant events in the monitored
processes. The Knowledge Generation software suite includes a rule editor that allows a
user to define a set of rules for extracting events from the continuous-valued data.
However, our experience with test data showed that it can be difficult to write a robust set
of rulesfor feature extraction. In some applicatiors, the time allowed certain stepsin a
monitored process varied greatly. In addition, radiation level measurements were
sensitive to geometry as well as history of the radioactive material. Our motivation for
exploring the pattern discovery and matching problem in the continuous-valued data was
to develop agorithms to aid in writing robust feature extraction rules.

A literature search on pattern matching in continuous-valued data turned up significant
features in the problem we were trying to address. Whereas the available literature
concentrated on handling large quantities of evenly spaced data, we had sparse, irregular
data. Furthermore, as described above, our patternt matching problem is complicated by
the fact that we would like to allow the patterns to be able to stretch in both the time
dimension and in the dependent variable dimension. In addition to pattern matching, we
also aimed to discover new, yet unknown patterns in time series data. Two approaches
for measuring similarity were identified as likely candidates: Dynamic Time Warping
(DTW) and Hidden Markov Models. The former looked particularly interesting at the
outset because some of the papers described segmenting the data in order to reduce
computation time on large data sets. Segmentation of the data could be a step toward
feature extraction.

Both agorithms are described in detail below, along with their respective advantages and
disadvantages. Although the DTW approach looked most promising, in the end, we had
insufficient data to make much progress on this thrust.

3.1 Dynamic Time Warping
DTW is defined in [10] by the following:

Given two time series, O; and O2, DTW finds the warping of the time dimension
in O; that minimizes the difference between the two series.

In essence, DTW is atechnique for aligning time series along the time axis for a better
similarity measure (see Figure 2). As humans, we can see that the two sequences have an
overal similar shape, but they are not aligned along the time axis. In Figure 2(A), the
similarity measure between the two sequences is based on Euclidean measure, which
assumes that the i point in one sequence aligns with the i point in the other sequence.
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This produces a very pessimistic similarity measure. On the other hand, DTW aligns the
sequences in such away as to minimize the distance between them. This nonlinear
alignment results in a more sophisticated distance measure as shown in Figure 2(B).

10 20 3 L1E al a0 D 1a 21 a0 40 B0 Bl

Figure 2: Comparison of similarity measure based on Euclidean distanceand DTW.
(A) A similarity measure based on Euclidean distance (thei™ point of one sequence
is aligned with thei™ point of the other sequence) producesa pessimistic similarity
measure. (B) DTW produces a better similarity measure. Figure taken from [9].

There are numerous papers on using DTW for time series data, including
[6][7][8][9][10]. Berndt and Clifford [6] describe a DTW agorithm as follows:

Assume we have two time series, Sand T, where:

S=5,% 4S5, -0 S

T= t1, t2, . tj, ...,tm
Note that the elements of the series are numbered according to where they occur in the
series, not according to the time at which they occur. Thus, § isthei™ element of the
series. The starting points for each series (s and to) are given to the algorithm. Hence, S
and T need not be aligned in the time axis, which alows for comparison of sequences
that do not start at the same time.

Thefirst step isto arrange the sequences Sand T to form an n-by-m grid, where each grid
point, (i,j), corresponds to an alignment between elements s and tj. We will use this grid
to find the warping path, W, which aligns the elements of Sand T such that the distance
between them is minimized. Let W =wy, Wo, ...,W,, then the warping path is a sequence
of grid points where wy = (i,j)x. Figure 3 shows an example of awarping path where the
point ws indicatesthat s is aligned with t;. Naturaly, if thereis no difference in the time
axis betweentwo time series, then W corresponds to points along the linei =j.




Wl/I
1

1 [

S
Figure 3: An example of a war ping path.

For detailed discussions regarding distance measures, normalization, and efficiency
restrictions (including boundary conditions, warping windows, and other constraints), the
interested reader isreferred to [6]. Below we present an example which utilizes one
instantiation of Berndt and Clifford’s DTW algorithm.

3.1.1 An Example of DTW

Consider the two time series, Sand T, as shown in Figure 4. The two series are sSimilar.
Note that Sisoffset from T along the time axis, and S is stretched vertically to be twice
T. Thevalues along the y-axis have no particular meaning in this example.

10 ),

Value (arbitrary units)
a1

0 1 2 3 4 5 6 7 8 9 10
Time (arbitrary units)

Figure 4: Exampletime series.

From Berndt & Clifford s algorithm, we establish an n-by-m grid with S on one axis and
T on the other, as shown in Figure 5. The number contained in each matrix element (i,j)
represents the cumulative minimum distance between the i point of S and the j™ point of
T. Thisis calculated using the following equation:

2(ij) = d(ij) + min[ 2G-1, j), 2G-1, j-1), 2G, 1) ]
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where d(i,}) is the distance between i and j based on some distance measure. Essentialy,
this equation is stating that the cumulative distance, ?(i,j), is the sum of the distance
between i and | (specified by a point) and the minimum of the cumulative distances of al
neighboring points. In this example, the magnitude of the difference between the values
is used as the distance measure, i.e., d(i,j) =|s —t; |. For example, the calculation for the
grid location (5,5), which calculates the cumulative distance between s5 and ts follows:

2(5,5) =d(5,5) + min[ 2(4, 5), 2(4, 4), 2(5, 4) ]
=]110-6 | + min[4,4,10]
=4+4
=8

Upon completion of all calculations, the optimal warping path is found by backtracking
through the grid and selecting the previous points with the lowest cumulative distance, as
highlighted in Figure 5. Asyou can see, DTW successfully generates what can be

10 12 16 8 12 18 12 12 14 14 12
9 12 14 8 10 14 12 10 12 12 12
8 11 11 7 7 13 11 9 11 11 13
7 9 11 ) 7 14 9 ) 12 13 14

T 6 8 8 4 8 12 8 10 14 14 14
5 8 4 8 4 8 12 14 12 14 18

4 4 4 4 4 10 12 12 14 14 16

3 2 6 2 6 14 12 14 18 18 16

2 2 2 4 6 12 14 14 16 16 18

1 0 4 4 8 16 16 18 22 24 24

1 2 3 4 5 6 7 8 9 10

S

intuitively seen as the “correct” points of alignment.

Figure5: Then-by-m matrix with the warping path highlighted.

3.1.2 Problems with DTW

DTW has been successfully used in many domains, and it looked like a very promising
way to compare a known pattern to a current data set in order to find if and how often it
occurred. However, DTW can produce unintuitive alignments where a single point in
one time series is mapped onto a large subsection of the other time series. In other
instances, DTW fails to find obvious alignments because a peak, valley, plateau, or other
feature of one seriesis dightly higher or lower than the corresponding feature in the other
series (see Figure 6).

20



= e :
] 5 in is = = 0

Figure 6: Example where DTW does not find the obvious, natural alignment. Note
that it failed to align thetwo central peaks. Figuretaken from[9].

Extensive discussion with Eamonn Keogh led to hisideais to perform DTW on the
derivative of the time series instead of on the time seriesitself. Thisistermed Derivative
Dynamic Time Warping (DDTW). Figure 7 compares the results of DTW and DDTW
for time series comparisons on which DTW fails to find the optimal alignment. (A) and
(C) show examples of alignments produced by DTW on a pair of time series, while (B)
and (D) show examples of better alignments produced by DDTW on the same pairs of
time series.

C D

Figure 7: Comparison of DTW and DDTW. (A) and (C) show problematic
alignments produced by DTW. (B) and (D) are alignments produced by DDTW.
Figurestaken from [9].



Despite the promise of this approach, time constraints prohibited the opportunity to
explore the DDTW agorithm further on our data sets.

3.2 Hidden Markov Models

We briefly spent some time exploring Hidden Markov Models (HMMs) as another
approach to solve our problem. The following isonly a brief overview of HMMs, but the
interested reader is directed to a comprehensive tutorial about HMMs in [25].

An HMM consists of the following items:

?? A setof N states, {1, ..., N}

?? An aphabet of output symboals, {a, ..., z}

?? A set of output probabilities, the probability that a particular symbol will be
emitted while in a given state.

?? A set of transition probabilities, the probability that the model will transition
(or jJump) from the given state to any other state at the next time step.

?? Aninitia state probability distribution.

At each time step, the HMM emits a symbol and either stays in the same state, or
transitions to another state.

Using this type of model, one can ask questions such as: What is the probability that a
given HMM generated the sequence a,b,a,c? Several transitions could have produced
that sequence. The Viterbi algorithm works out an approximation to the probability that
a particular sequence of observations was generated by an HMM. They are called
Hidden Markov Models because the states that the system goes through are not known.

3.2.1 Advantages and Disadvantages of HMMs

The advantage of HMMs is that they are firmly grounded in probability. There are
principled and systematic procedures for estimating and training the model from labeled
data as well as standard methods for detection, such as the Viterbi agorithm. When the
Viterbi algorithm is implemented, the resulting number has meaning - it is the probability
that a time series was generated by an HMM along the most probable path through the
HMM for that sequence. Conversely, the number that comes out of the DTW agorithm
is not as explainable, and its interpretation as a similarity measure is series-dependent.

The disadvantage of HMMs is the same as the advantage: they are firmly grounded in
probability. HMMs are much more difficult to understand and implement. Show a
person a picture of two time series stretching and aligning along the time axis asin Figure
2, and they will understand it. Show that same person a page of probability figures and
state transition diagrams for the corresponding HMM, and they will most likely not
understand it. In addition, it has been proven in [10] that HMMs and DTW are, in fact,
optimizing the same criterion. In his communication with the team, Tim Oates suggested
that “if DTW does the job for you, the algorithm is much easier to implement and might
be computationally cheaper than the corresponding HMM algorithms.” Thisled usto
pursue DTW in greater depth than HMMs,
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3.3 Directions for Further Work

Our initia investigation of Keogh's DDTW agorithm indicates that thisis a fruitful
approach for further study. Another interesting approach is that of Oates, Firoiu, and
Cohen, who introduce and discuss the idea of combining DTW and HMMsin [10]. This
work is expanded further in Oates’ dissertation, titled Grounding Knowledge in Sensors:
Unsupervised Learning for Language and Planning.

The next section discusses our approach and solutions to the pattern discovery problems
we have addressed, in particular, pattern discovery in discrete event time-series data.
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4 Pattern Discovery in Discrete Event Time
Series Data

4.1 Introduction

The second major emphasis of the LDRD project was the problem of discovering patterns
in discrete event time series data. We conservatively define a pattern as a subsequence
that occurs more than once, although a more genera definition for a pattern is
subsequences that occur more frequently than some threshold. The approach developed in
this section is equally applicable to discovering patterns in both event data from a single
sensor and event data from many sensors.

The basic approach is to tokenize the event data, representing the events as symbolsin a
sequence. In some cases, it is possible to use domain-specific knowledge to pre-process
the sequence and reduce its size. Initialy, patterns are “discovered” in the data by
enumerating all subsequences that occur more than once. We generally constrain the size
of the subsequences to some user-defined value. In addition to frequency, other statistical
measures can be computed to help a user decide which patterns are significant.

One interesting problem with discrete event data from multiple sensors is that events
from simultaneous activities can be intermingled, effectively disrupting the patterns or
making them “noisy.” To handle this problem, we investigated the use of regular
expressions and likeness measures to identify similar patterns.

4.2 Event Tokenization

The process of tokenization is straightforward and is dependent on the specific data. The
raw data will be in arecord form containing time and event information including the
source of the event and the event type (e.g., door open, door close, break-beam broken,
efc.).

There are a number of different tokenization schemes that could be applied to the data.
The smplest scheme we have used involves time flattening. In a time-flattened sequence
we tokenize strictly on the event type in chronologica order, ignoring both the duration
times between events and the source of the data. Table 1 shows a portion of asimple
time- flattened, event-type/token mapping. A portion of atokenized sequence is shown
below:

ADEDFDEFDEFDEFDEFFDEDFFDE ...

Table 1. Bunker sensor event type tokens

Event Description Token
Door Open A
Door Close B
Motion Start C
Occupied D
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Image Trigger E

Unoccupied F

The monitoring system that provided much of the data studied during this project has a
number of sensors that behave similarly and the observed activities resulted in
considerable variability in relative timing of sensor events. The result of this ssmple time-
flattened tokenization approach was quite powerful in detecting generic patterns.

More complicated tokenization schemes can be used to capture other dimensions of the
event data. For example, the time duration between events may be important in deciding
if two event sequences are similar. To capture this aspect of the problem, we
experimented with a tokenization scheme in which the event types were tokenized with
capital |etters as shown above. The time between events was then represented with the
lower case letters "a" through "j" where "a" represented 0 to 6 minutes since the previous
event, and "b" 6 to 12 minutes and so forth. The letter "j" represented an hour or more
between events. Using the same data as the previous example, the resulting sequenceis
shown below:

AaDaEaDaFaDaEaFaDaEaFaDaEaFaDaEaFaFaDaEaDaFaFaDaE ...

The tokenization scheme can aso be extended to handle complex objects. In fact, thisis
the approach used in the robot data analysis example in Section 5.8.3

For the remainder of this report, the time-flattened token sequences will be used in order
to keep the examples simple.

4.3 Preprocessing the Sequence

There are two ways the sequence may be pre-processed before beginning the pattern
discovery process. First, repeated tokens can be condensed into a single token, producing
aform of event collapsing. Thisis useful in cases in which certain event types repeat
frequently (e.g., motion events from a motion sensor) and the user has decided that the
number of repeated eventsis of little interest in identifying patterns. The token
condensation process probably makes the most sense for time-flattened sequences.

In addition to generating single symbol sequences, pre-processing can aso generate
"Event Words" which is the segmentation of the sequence based on a specified arbitrary
time interval between event tokens. This approach is useful if the data captures several
periods of sporadic activity. A relatively long time between events indicates a quiescent
state for the monitored facility By dividing the data into event words, similarities among
the periods of activity can be identified. The following sequences show examples of both
condensed sequences (1) and event words with a maximum interval of 12 minutes (2):

(1) ADEDFDEFDEFDEFDEFDEDFDE

@  JEEEE]
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ADECFCDEDCEFFDEDCFBCEF

J

J

J
ADEDIFCDECFCDECBCECECEFF
CECECEC

CE

CECE

CECECECECE

4.4 Pattern Discovery

The primary purpose behind our effortsisto discover or mine for new and interesting
patterns in the data. The method we pursued to find new patterns was to exhaustively
search the symbol sequences for repeating subsequences. This method will produce
volumes of subsequences depending on the length of the sequence and the distinct
number of tokens (alphabet) that comprises the sequence. There are two problems
associated with pattern discovery. The first problem is the intensive nature of the
exhaustive search required to find al patterns. The search is exponential to the size of the
sequence. Second is the matter of deciding what subsequences or patterns are significant
and merit further investigation or should be ignored.

One of the data sets studied during the course of investigation in the LDRD was the
Bunker Sensor data. This data set is essentialy alist of events from various sensors
located in storage bunkers. These events are recorded in a database as the events occur.
These events are tokenized as symbols in a time-flattened sequence, which represents the
list of eventsin chronological order. The goal of our study was to discover patterns that
occur in the event list. Further, the significant patterns may not be exact matches but
reasonable approximations. The first step in our process is to discover patterns that are
exact matches and are frequent. Our initial attempts employed a brute force method that
enumerated every possible subsequence of every possible size. Once enumerated the list
can be pruned to eliminate non-frequent patterns and patterns that are wholly contained in
larger subsequences. This brute force approach is certainly capable of achieving the goal.
It is however very intensive in both space and time requirements. The number of
subsequences that must be examined is N(N-1)/2 where N is the length of the overall
sequence. For a sequence with 1000 elements, 499,500 subsequences must be examined.
It is reasonable to assume that the unsupervised search for unknown patterns will be
intensive; however, there is a possibility of reducing the search space using pruning
techniques.

4.4.1 Related Efforts

Agrawa and Srikant at the IBM Almaden Research Center introduced two important data
mining algorithms known as A-priori [11] and GSP (Generalized Sequential Pattern
mining) [30]. The basic concepts underlying these algorithms are as follows. If a
subsequence of length k is determined to be frequent in a sequence and k is greater than 1,
then any subsequence of length k - 1 from the previous subsequence must also be
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frequent. A subsequence is deemed to be frequent if the count of occurrences of that
subsequence in a larger sequence is greater than some predefined threshold. The
discovery of new frequent patternsis done in a stepwise progression where new patterns
of size k are found by building upon patterns of size k - 1. A-priori and GSP build the
next level of new patterns by generating the set of possible next level sequences then
scanning the database for their existence.

4.4.2 Adaptations to A-priori and GSP

We have developed an algorithm that incorporates the incremental creation of patterns
using the frequency-pruning model from A-priori and GSP. This adaptation views the
sequence as an indexed array and the subsequences are smply represented as an index
pointer and a sequence length. Rather than generating al possible next level sequences
and scanning for their existence, this algorithm takes the previous patterns of length k - 1
and generates the next set of subsequences with length k. The distinct subsequences are
tallied to determine frequency by maintaining a hash table of the subsequences and their
counts. For each new distinct pattern generated, the frequency is checked and those not
meeting the frequency threshold are pruned from the list of new patterns. After the list of
new patterns is pruned the remaining patterns are added to the list of frequent patterns.

4.4.3 Pattern Significance

Our agorithm takes the pruning phase one step further by eliminating any patterns of
length k — 1 from the list of frequent patterns if those patterns are wholly contained in the
patterns of length k. We accomplish this by comparing the frequency of a pattern with
the frequency of the prefix of the pattern. If the frequency of the prefix matches the
frequency of the pattern, then the prefix is wholly contained in the pattern and the prefix
can be eiminated from the list of frequent patterns. Thisis also true for the suffix of the
pattern. Consider the following example.

Table 2: Patternsfor sequence ABXABZ

Frequent | Sequence | Frequency
Pattern Positions

A 0,3 2
B 1,4 2
AB 0,3 2

The pattern AB starts with the token A, and since the frequency of both patterns (A and
AB) is 2, it is clear that each occurrence of A isfound in every occurrence of AB. A is
wholly contained in AB, and in our algorithm, the prefix A can be eliminated from the
list of frequent patterns. Note that the suffix B is also wholly contained in the pattern AB
in this example and can aso be eliminated. Had the example sequence been ABXABZA
then the frequency of the token A would be 3 and A would not be eliminated.
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4.4.4 Java Implementation

While pursuing our investigation we built a Java implementation of this algorithm and
incorporated it into the Pattern Discovery Tool. Javas object orientation facilitates a
highly flexible implementation. The fixed array was implemented as an array of objects,
which means that the array elements can be a sequence of any object that represent an
entry in the data set as needed without requiring a modification to the algorithm. The
keys used for the hash table entries are simply array pointer objects that point to the first
occurrence of a discovered pattern sequence in the array. The only requirements imposed
on any new application object is that it must implement a Java class that represents a
single entry in the data set, and provide methods to assess equivalence of the entries.

4.4.5 Future Investigation in Sequence Pattern Discovery

Much of our investigation centered on sequence mining; however, the temporal aspects
of event sequences should also be considered. The study of time granularities and
temporal reasoning [12] in conjunction with pattern discovery will enharce our ability to
understand time sequences where events are not distributed in periodic patterns.

There are a number of other individuals working on similar problems that came to light
late in the LDRD cycle. Of particular interest are a number of papers presented at the
Knowledge Discovery and Data mining conference in August 2001. Mannila and
Salmenkivi [27] provided a study of event intensity in sequences. Liu, Hsu and Ma [28]
propose a methodology to remove insignificant rules or sequences. Zheng, Kohavi and
Mason [29] provided a well-researched comparative analysis of the leading association
rule discovery algorithms. Han and Pei [30] presented two A-priori algorithm
adaptations, the FreeSpan and PrefixSpan algorithms. These algorithms are logical
performance extensions to A-priori and GSP.

4.5 Post Processing and Analysis

After the initial discovery of patterns, additional processing and analysis can take place to
mine interesting information from the set of discovered frequent patterns.

4.5.1 Elementary Patterns

The premise that states that any pattern that is wholly contained within larger patternsis
insignificant may or may not prove valid. The premise does prove useful in reducing the
number of patternsto consider. However, the premise ignores the possibility that there
are smaller or more elementary patterns that are building blocks of larger patterns.
Running the pattern detection process and the reductionagorithms on a data set of
approximately 2000 bunker events produced more than 350 patterns. Table 3 shows a
sample of these patterns that contain a possible elementary pattern CE. This elementary
pattern by itself was removed during the pattern discovery process, as were CECE,
CECECE, CECECECE and CECECECECE. It appears that CE by itself has some
significance because there are patterns where it occurs without repetition, but in
conjunction with other tokens. It also appears however, that the patterns where CE
repeats, such as CECE, are probably not significant by themselves. More work needs to
be done to find a solution for this issue.
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Table 3: A sample of patterns containing the possible elementary pattern CE

Pattern Sze | Frequency
ADEDCEC 7 2
BCECE 5 3
BCEF 4 3
CBCECEC 7 2
CDECE 5 2
CEAC 4 2
CECECDEC 8 2
CECECEC 7 219
CECECECEC 9 207
CECECECECECE | 12 | 198
CECECEO 7 2
CECECF 6 6

4.5.2 Noise Avoidance

Event collapsing techniques are aform of noise avoidance in that they remove
uninteresting subsequences from consideration, but they only suppress events of a
specific type. Thereis a need to find patterns that may have arbitrary "noise" or unrelated
events included. Certainly, a studied approach to the aralysis of the data and the removal
of uninteresting events could reduce much of the noise. Such an approach may be
feasible, but would be costly because of its need for human interaction. The need to
detect similar patterns provides opportunities for future work. Some possible techniques
include Regular Expressions [31] and other State Machine models especialy if they
incorporate the temporal aspects of the data.

As an example, the following are a set of regular expressions thet can be generated from
a selected subsequence (pattern). These regular expressions can then be executed against
the larger sequence to find other subsequences that match them. These new subsequences
should be reasonably similar to the source pattern, but containing some noise. These
expression derivations assume that the positions of the first and last tokens are
significant.

Two character pattern - i.e. AB:
Boundary Expression - "A.*?B" - find any sequence that starts with an A and
ends with a B and has anything else in between.

Three character pattern - i.e. ABC:
Boundary Expression - "A.*?C"

Interior-PermutationwithNoise - "A.*?B.*2C" - find any sequence that starts
with an A and ends with a C and has at |least one B in between.

Four or more character pattern - i.e. ABCD:
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Boundary Expression - "A.*?D"
I nterior- Permutation-with-Noise Expression -
"AXBX?D", "AF?CHFD", "TAXBF2CHFD", and"A*?C*2B.xX D"

4.5.3 Statistical Measures

Statistical analysis is the most promising tool for determining the significance of a
discovered pattern. The designations that we use require some explanation. MF stands for
measured frequency and MP for measured probability. MF is smply the count of
occurrences of a given pattern in the sequence. MP is calculated as number of
occurrences of a subsequence divided by the number of windows in the sequence where
the subsequence could occur. We count windows as the number of possible positionsin
the sequence in which a given pattern could exist. For example if a sequence has 10
positions and the target pattern is 5 tokens long then the number of windowsis 6. The
number of windows is calculated as Sequence_Size - Pattern_Size + 1. The letters A, B
and C represent individual tokens found in the pattern regardiess of the actual number of
actual tokens. If the letters are shown individually, the implication is that the individual
tokens in the pattern are considered individually. If the |etters are contiguous then the
tokens are used as a group in the calculation of the statistic. Each measure that we have
explored will be described below.

MP(A)MP(B)MP(C)

This statistic is the measured probability of each individual token in the pattern
multiplied by the measured probability of the other tokens in the pattern. It answers the
guestion, if tokens are occurring randomly, what is the probability that they will occur
together at any given window. In our datathe MP("D") = 0.103071 as "D" occurred 198
times within 1921 windows of size 1, and the MP("E") = 0.281624 as"E" occurred 541
times, therefore the MP("D")MP("E") = 0.029027

MFMP(A)MP(B)MP(C))

This statistic measures the expected frequency of a set of tokens occurring together in the
sequence, assuming random placement of the tokens. It is calculated by multiplying the
MP(A)MP(B)MP(C) by the number of windows for the size of the given pattern. In our
example MF(MP("D")MP("E")) = 55.73184 or we would expect to find the pattern
around 56 timesif D and E are placed randomly in the sequence.

MP(ABC)

This is the probability of a given pattern of any size occurring in any single window. It is
calculated as the number of occurrences divided by the number of possible windows. In
our example DE actually occurred 144 time in possible 1920 windows, thus MP("DE") =
0.075

MF(ABC) or Count
Thisis simply the number of occurrences of a given pattern in the sequence.

MP(A)MP(BC)
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This gtatistic is most meaningful for patterns with more than two tokens. It provides the
probability that the first token in the pattern is randomly placed with the remainder of the
tokens. When compared with MP(ABC) it will provide a measure of correlation between
the tokens in the pattern.

MP(AB)MP(C)
This dtatistic is used the same as MP(A)MP(BC) except it operates on the last token
rather than the first.

We dso investigated the purely random probabilities and frequencies, RP(ABC),
RF(ABC), RP(A) and RF(A). These metrics assume that all tokens are equally likely in
the sequence. Therefore, these statistics may not be as useful as the measured
probabilities and frequencies; they are highly dependant on the length of the sequence
and the subsequence.

These statistical measures can be used to answer specific questions about characteristics
of the token sequence and the domain it encodes. As an example, consider the following
guestion: Given the token pair AC in the current sequence, what is the likelihood that the
token E comes next, i.e. ACE? In the bunker domain from Table 1, this question
trandates to: Given a Door Open event followed by a Motion Start event, what is the
likelihood that the next event is an Image Trigger? To answer this question, we divide
the measured frequency of the ACE pattern by the measured frequency of the AC pattern:
MF(ACE) / MF(AC). If ACE occurred 21 times and AC occurred 32 times, then we
could conclude that, in the scope of the current data set, any Image Trigger event
immediately followed the Door Open — Mation Start event sequence occurs roughly 65%
of the time.

4.6 String Likeness Measures

In the course of investigation of the problem of discovering patterns within symbol
sequences, it has become desirable to discover patterns that are like others. Tools such as
Regular Expressions can easily enumerate alist of patterns that are smilar within a
sequence or string of character tokens. Once the list has been compiled it is desirable to
determine thelr likeness as compared to another string, perhaps a pattern that for some
reason is considered to be significant. Below we discuss several likeness or fuzzy metrics
that can be applied to this problem.

4.6.1 Human Interpretation of Likeness

Likeness or similarity between two character strings is highly ambiguous and subject to
individual interpretation. A brief poll was taken, and from 13 responses the foregoing
conclusion was drawn confirming intuition. The poll presented 20 pairs of uppercase
character strings and asked the respondent to decide how similar the two strings were on
ascaefrom 1 to 10, with 1 being the least similar and 10 being very much the same. No
further direction was given as to what the scale meant, and the individuals were forced to
decide what string likeness meant to them. The actual poll is shown in the Appendix.
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Despite the small sample size (13 responses) from the poll, several trends became
apparent in the results. The first string pair ABCD and DEFG had responses that were
fairly polar, either hardly aike or very similar. Those feeling that the pair was dissimilar
indicated that any similarity based on size and a single common character was rather
small. Those stating that the strings were similar did so because they observed a shared
lexical sequencing pattern and that the pattern was significant enough to overshadow
other dissmilarities. For this pair, responses ranged from 1 to 10 with 7 being the most
frequent.

The overall responses tended to exhibit inconsistency in judgment of similarity. In two
cases the string ABCDE was paired with the same string, but with interspersed characters
(noise). In one case the noise consisted of the single character X, AXBXCXDXEX; the
other case used single random characters, AWBOCZDPE. People tended to favor the
interspersed Xs over random characters as being more similar, even though there was one
more noise-character, X, at the end. It could be concluded that consistent noise is far less
distracting than random noise when humans compare strings.

Further analysis is better left to a psychological study. Certainly the poll was an
extremely small sample, but interesting conclusions can still be drawn from the data. The
purpose of the poll was to gain a rudimentary understanding of how humans interpret
string similarity as compared to algorithmic methods. Our goal is not to mimic human
behavior but rather to define a metric that can be interpreted usefully by humans when
making decisions about the significance of patternsin a data set.

4.6.2 A World of Choices

If our goal isto provide a metric of comparison between discovered pattern sequences,
what are our options? We could try to understand and mimic humanbehavior. For our
specific need this scarcely seems cost effective.

Basic Metric: During the course of the study a basic metric was developed. The metric is
preliminary, but it provided a starting point for investigation. The metric is a number
between 0 and 100 where 0 represents no similarity and 100 represents a perfect match.
The algorithm compares two strings by comparing the second string (target string) to the
first (source string). Penalties are assessed based on three criteria 1) the difference in
length between the two strings, 2) position discrepancies in the sequence of characters,
and 3) missing charactersin the target string. If at any time while calculating the penalties
the metric falls below zero, then zero is returned.

4.6.3 Related Work in String Similarity Assessment

The following are alist of methods found from a literature search. Jun-Ichi Aoe [32]
describes a number of string comparison metrics. The edit-distance metric measures the
smallest number of editing transformations required to transform one string to another.
The largest-commont subsequence algorithm is a variation of edit-differences. It seeks to
discover the largest subsequence in common between the two strings, and then calculates
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the edit differencesfor the rest of the characters. The k-mismatches metric isa
comparison of characters between two strings of the same length. A tally is made of the
number of positions between the two strings where the characters do not match. The k-
differences metric also calculates the number of edits required for transforming one string
into another. The distinguishing characteristic between k-differences and edit-distance is
that k-differences considers an update of a character as a single transformation, whereas
edit-distance would treat an update as being two transformations, the deletion of one
character and an addition of another.

There is an interesting adaptation of the k- mismatches model by Jared Boehm [33]. Each
matching character is worth 1.0, if the character is found either immediately before or
after its expected location then its worth is discounted to 0.75. This model also allows for
phonetic spelling similarity. Exact character matches are worth 1.0, but if a phonetic
equivalent were found then the match would be less than 1.0.

4.6.4 Adaptations for Our Needs

The metrics edit-distance, k- mismatches and k-differences do not provide explicit
measures for positional or sequencing differences and the interjection of noise; therefore,
we decided to explore arefinement of the Basic-Metric described above. Noise may or
may not be acceptable depending on what the noise is. Tokens representing system state-
of- health events that are interspersed with tokens representing human-activity events may
not be of significance when analyzing events caused by humans. Clearly the absence of
some events over others may be significant. Finaly, the ordering of tokens may or may
not be of consequence depending on the tokens.

We propose a Token Sequence Weighted metric that allows a domain expert to provide
appropriate significance to tokens and metric components. Each token can be weighted to
provide a penalty relative to the three characteristics, noise, absence, and sequence
position. Additionaly, the individual components of the metric, noise, absence and
seguence position can be weighted to emphasize or de-emphasize their relative
importance during analysis.

Noise is ameasure of the number of extra tokens found in the target sequence, which are
not found in the source sequence. Absence measures the number of tokens found in the
source sequence, which are missing in the target sequence. The noise and absence
components are calculated by first counting the number of distinct tokens in the source
and target sequences. For example, if we wish to compare the token sequence BBAD
(target) to ABCA (source) then the following table will be produced:

Table 4: Token noise and absence analysis

Token | Source Count | Target Count | Difference
d
A 2 1 1
B 1 2 -1
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C 1 0 1

D 0 1 -1

All weights, either for individual tokens or for each of the three components are bounded
within the range of 0.0 to 1.0.

Table5: Penalty component weighting by token

Token | Noise Weight | Missing Weight | Position Weight
n; m Pi
A 10 1.0 10
B 0.75 1.0 1.0
C 1.0 0.0 1.0
D 05 1.0 1.0

Noisy tokens appear in the table as negative differences, and absent tokens appear
as positive differences. Noise can be calculated by the following formula where a
is the number of distinct tokens in the source and target sequences, d; is the
difference between the source and target count, n; is the token noise weight, and t
is the number of tokens in the target sequence. Note that dividing the summation
by t normalizes this component to a range between 0.0 and 1.0.

212
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Our example yields a noise penalty component of 0.3125.

From our example we would be missing one A and one C. The absence
component of the metric is calculated in a manner similar to the noise component
using the following formula, where s is the number of tokens in the source
sequence, and my; is the token absence weight. Note that dividing the summation
by s normalizes this component to a range between 0.0 and 1.0.
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Our example yields a missing penalty component of 0.25.
Sequence position is the relative location of the tokens as they are laid out in a

sequence of tokens. The source string is assumed to maintain the positional
information for the comparison. To compute the sequence position component of
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the metric, acost is calculated for each token in the source string as they appear in
order from left to right, with the cost being the number of positions off from the
expected location in the target string. The expected location is determined by
locating the tokens in the source sequence in order as they occur, then finding
their relative order in the target. If atoken is not found in the target then the
absent token isignored, the expected position is incremented, and the next token
from the source is considered. The following table is from our example, where A’
denotes the second A found in the source token sequence. The maximum possible
offset for any given token is computed as MAX(Il-e-1,e), where | is the length of
the target sequence and e is the expected position of the source token within the
target sequence. The sequences are indexed starting with O at the first position.

Table 6;: Offset calculations between ABCA and BBAD

Token| Expected L ocated at Offset From Maximum
Position Position Expectation Possible Offset
Mi
A 0 2 2 3
B 3 1 2 3
C 2 Absent 0 0
A 3 2 1 3

The sequence position component is calculated by the following formula where a
is the number of tokens in the source sequence, and p; is the token's position
weight. The variable o; is the number of positions offset from the expected
position in the target sequence from where the token is actualy found. If the
token is missing in the target sequence then the offset is 0. The variable M; isthe
maximum possible offset from the expected position for a token in the target
sequence or O if the token is missing in the target sequence.

? A ?

g ? 0 g a
>—2—— SumMaxOff ? 09 where SumMaxOff ? ? M,
?SumMaxOff " o1
31, SumMaxOff ? 0 3

Our example yields a sequence position component of 0.5556.

The overall smilarity value is calculated by the formula below. The metric is scaled from
0.0 to 1.0, with 1.0 representing a perfect match and 0.0 representing no similarity.

Table 7: Penalty component weighting

Metric Component | Weight
noise 15
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absence 25
sequence position 1.0

1.0? %nw, ? mw, ? pw, Y/ 3
The similarity value from our example is

1.0- ((0.075* 0.3125+ 0.25* 0.25+ 1.0 * 0.5556) / 3) = 0.7158.

4.6.5 Conclusion

The problem of determining how closely two sequences match is highly dependent on
individual interpretation. Trying to mimic human behavior in measuring sequence
similarity appears to not be cost effective. The Token Sequence Weighted metric
provides a flexible method that a user could adapt to meet current analysis needs. An
additional benefit of the algorithm is that it can be implemented such that it can calculate
similarity in sequences of data structures much more complex than strings of characters.

In the next section, we discuss the Pattern Discovery Tool, which isaJAVA
implementation of many of the algorithms and techniques described in this section. We
also present our findings which resulted from applying this tool to several domains,
including unattended monitoring sequences (bunker event data) and robot navigation
sensor and motion event sequences.
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5 The Pattern Discovery Tool

5.1 Introduction

The Pattern Discovery tool is a prototype tool developed during the course of the Fuzzy
Data Mining LDRD. The purpose of the tool is to alow an analyst to view token symbol
sequences that represent sequences of events in chronological order as they were logged
in a database. The purpose of the analysis on these event sequences is to discover patterns
in the data. These patterns may be exact matches or somewhat fuzzy matches. The
visualization aspect of the tool is used to display patternsin their context. The user can
also manipulate the sequence by eliminating or replacing recurrent patterns. As the tool
discovers patterns it provides statistical measures to provide a means for assessing the
relative significance of the patterns.

5.2 Tool Components

The tool has severa visua components. The edit area is where the token sequence is
displayed. This areais a functioning editor that allows the tokens to be modified in an ad
hoc mode by the user. When a new file, token sequence, is read into the tool, the new
sequence overlays the old one in the editor window. On the right side of the tool is the
pattern list. Thisisthe list of patterns that the pattern discovery algorithm located within
the token sequence. The definition of a pattern for thislist is any subsequence of tokens
up to the Pattern Size that occurs more than once in the whole sequence. During the
pattern discovery process information for calculating statistics are gathered. The patterns
are displayed with an initial statistic. The initial statisticis MP(ABC) which is the
probability of finding the particular pattern at any location within the entire sequence. If a
user selects arow in the table by clicking on it, the pattern is selected and displayed in the
Current Pattern field. The Current Pattern field will be used in various tool functions. The
window in the lower left portion of the screen provides information about the actions that
have occurred. Figure 8 displays the tool’ s main screen.
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B} Sequence Pattern Discovery Tool M=l B3
File Edit Style Statistics Sort Table Info

GGGGDEDDEABCCCDEFABCDEFDDEFABCDEFDDFEGGABCDEFDDFGGABCDEFDDFEABCD : Pattern Size: |u
EFDDFEABCDEFDDFEABCDEFDDFEGGGGABCDEFDDFEABGGCDEFDDFEABCCDEFDDFEAB | 3| Current PatternBCC
CDEFDDFEGGABCCDEFDDFEABCCCCEFCCDFDEFABCDEFDDFEABCCDEFDGGGGGGGGGG | - Pattern [ mMPisED)
GGGGGGGGABCDEFDDABCABCABCCGGABCCGCGEFDGGFABCDEFDDEFABCCDEFDFDEF | {4 (0.0ge171a7
ABCDEFDDFGGGGGGABCCCCDEFIAHIABCDEFDDEEFGGABCDEFDDEFABCDEFDDEFABCD | - |2g 0.07932011
EFEFABCDEFDDEFGGABCDEFDDEFABCDEFDEFABCDEFDDFAHDENNNIAHGGGGGGGGGGGI | ARC |0.0786BETE1
ABCDDEEFGGABCDDEEFGGGGIINIABCDEFDDFEABCDEFDDFEABCDEFDDFEABCDEFDDFA | | AGG 0.00283437
BCDEFDDFEABCDEFDDFEABCDEFDDFEAGGBCDEFDDFEGGINNABCDEFDDEEFABCDEFDD | | Ay 0.00637384
EFGGABCDEFDDEFABCDEFDFEFGABCDEFDDEFABCDEFDDFABCDEFDDEFABCDEFDEFGIIN | | AHA lo.oo1a174z
NABCDEFDDFAGGBCDEFDDFEABCDEFDDEFABCDEFDDFEGGABCDEFDDFEABCDEFDDFEA | il aHD (000141743
BCDEFDDFABCDEFDDFENNIABCDEFDDFGGABCDEFDDFEABCDEFDDFEABCDEFDDFEABC | | AHG (0.00141743
DEFDDFEABCDEFDFEGABCDEFDDFEGGABCDEFDDFEGGGGGGGABCDEFDDEEFGGABCDEF | AN (000217615
DDFEABCDEFDDEFEGGABCDEFDDFEABCDEFDDFEABCDEFDDFEABCDEFDDFEAECDEFDDF | g 0.02208433
EGGAHAHIABCDDEEFDDEFEAHININGGGGABCDEFDDFEABCDEFDDEFABCDEFDDFEGGABC | :{BC 008144478
DEFDDFEABCDEFDDFEABCDEFAHAGGHAHGGDEFEABCDEFDDFEGGIGGIINMGGIABCDEF | - |BCA 0.00212615
DFENNMABCDEFDDFEABC CCDEFDDFEABCDEFDDAFEBCDEFDDFEABCDEFDFEABCDEFDD | “lgCo 0.00850461
FEABCDEFDDFEABCDEFDDEFEGGGGGGGGGGABCDEFDDFEABCDEFDDFEABCDEFDDFEAR | -|BCD l0.07087172
CDEFAHDDFEABCCDEFDDEFABCCDEFDDFEABCDEFDDFEABCDEFDDFEGGGGGGGGINNMA | | |0.n9695683
BCABCDEFDDFGGABCDEFDDFEABCDEFDFAGGBCDEFDFEGABCDEFDDFEABCDEFDDEFGG | -|CaB (000212615
ABCDEFDDFEGGGGGGGGGINNABCDEFDDFEGGABCDEFDDFEABCDEFDDFEABCDEFDDFE | :{cC [0.01345604
ABCDEFGGDDFEABCDEFDDFEABCDEFDDFEABCDEFDFEGHIIINNIGGGGGGGGGGG dcce 0.00425230
: |0.00708717

ST = g 0.00141743
Opened String File HAKGTeam\Fuzzy Data Mining\Pattern VisualizenDatawune-July tdt D.'D?Bm 1'9
Found 12 accurances of BCC : 00021 251’ 5 ==
N || Getpatterns | Fitter Options

caret: text position: 1413, view location = [21, 277]

Figure 8: The main Sequence Pattern Discovery Tool screen

5.3 Editing Sequences

As described earlier the edit window is afunctioning editor that allows a user to add or
delete tokens just like regular text. All or any portion of the sequence can be selected,
highlighted, replaced, cut or pasted. There are some additional edit capabilities that are
located in the Edit drop down menu that are especialy useful in analyzing token
sequences. See Figure 9. Pattern Consolidation and Pattern Replacement operate on the
selection in the Current Pattern field. Pattern Replacement simply replaces every
occurrence of the selected pattern with another token as provided by the user. Pattern
Consolidation replaces repeating sequences of the selected pattern with asingle
replacement token or sequence of tokens. Hold Current String allows the user to put the
current sequence in a buffer that can be put back into the editor later in the session.
Reanalyze Current String will run the sequence in the editor back through the pattern
discovery process. Thisis necessary if edits have occurred. The sequence can also be
written to a file by using the File drop down menu and selecting Save String to File. The
Style drop down menu allows the text of the sequence to be displayed in different styles.
Style changes are not persistent at this time and have limited utility.
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Undo style change

cut-to-clipboard
copy-to-cliphoard
paste-from-cliphoard

select-all

Pattern Consolidation
Pattern Replacement
Hold Current String
Reanahlyze Current String

Figure 9: TheEdit drop down menu

5.4 Pattern Statistics

The Statistics drop down menu, Figure 10, alows the user to choose the pattern statistic
that is displayed with each pattern in the Pattern List. When a statistic option is selected it
is recalculated and displayed for each pattern in the list. The definition for each of these
statistical measures was discussed previoudy in section 4.5.3.

Count

MP{ABC)
MF(ABC)
MP{AIMP(B)MP(C)
MF(MP(AMP{E)MP(C))
MP{AMP{BC)
MP{ABIMP(C)
RP{ABC)

RF(ABC)

RP{(A)

RF(A)

Figure 10: The Statistics drop down menu

5.5 Table Sorting

The Table Sort drop down menu, shown in Figure 11, allows the user to sort the pattern
list table by the pattern in lexical order in either ascending or reversed order, or by the
selected statistic in ascending or descending order.
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Sort Pattern Column
Sort Pattern Column {(Reverse)

Sort Statistics Column
Sort Statistics Column (Reverse)

Figure 11: The Sort Table drop down menu

5.6 Pattern Information

The "Info" drop down menu, Figure 12, allows the user to gain additional insight about
patterns.
?? Display Legend displays a dialogue that lists the definition of all the distinct
tokens found in the sequence.
?? The Display Pattern Legend dialogue shows the meaning of any specific pattern.

?? Highlite Pattern will change the color of the text for each instance in the sequence
of the selected pattern shown in the Current Pattern field. Figure 8 shows the
pattern BCC highlighted in red.

Display Legend
Display Pattern Legend
Highlite Pattern

Get Regular Expression Patterns
Provide Regular Expression Patterns

Figure 12: Thelnfo drop down menu

The other two menu items Get Regular Expression Patterns and Provide Regular
Expression Patterns direct the system to discover other patterns that may be similar but
not exactly like a previously detected pattern. Get Regular Expression Patterns will
generate a set of regular expressions from the pattern that is selected and shown in the
Current Pattern field. The matching patterns are displayed in the Patterns Like ...
window. See Figure 13. You will note that all the patterns begin and end with the
beginning and ending tokens of the selected pattern. Thisis aresult of the regular
expressions that were generated. It is assumed that first and last tokens of the selected
pattern are significant. The patterns displayed are a union of al the results from executing
each of the regular expression permutations. In the table two numbers are also shown,
first the count of the number of instances of the pattern in the sequence, secondly a
compatibility measure, explained in Section 4.5.3, quantifying how close or similar the
detected pattern isto the original. As implemented, the algorithm assumes all weights are
one. Thetool could be modified easily to accept user input for the weights.
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[=3 Patterns Like 'BCD"

Pattern Count | Compatibility to BCD
BCD 10a |1o0.0
BCCD 6 198.0
BGGCD 1 960
BCCCCD. |1 194.0
BCCGCGEFD |1 |85.0
BCCCCEFCCD . 1 |8A.0
BCCGGABCCGCGEFD 1 |TE.O
BCABCCGGABCCGCGERD 1 |70
BCABCARCCGGABCCGCGEFD |1 |64.0

Figure 13: The Patterns Like ... window

The last item in the "Info" drop down menu is Provide Regular Expression Patterns. This
option alows a user to enter aregular expression directly in a dialogue. See Figure 14.
When the user requests patterns from a regular expression that he provided, the Patterns
Like ... window displays only two columns, the pattern and the count of occurrencesin
the sequence. See Figure 15. The Patterns Like ... window can be used just like the
pattern list table in the main window to select a pattern for the Current Pattern field.

[E3 Click DK

Regular Expression To Use:

OK Cancel

Figure 14: The Regular Expression Entry dialogue
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[=3 Patterns Like "A.=7B_=7C"

Fattern Caunt
11

ABC

AFEBC

AHIABC

AHAHIABC

AHDDFEABC
AHGGDEFEABC
AGGHAHGGDEFEABC
AHIINGGGGABE
AHAGGHAHGGDEFEABC
AHGGGGGEGEGEGIABG

Figure 15: The Patterns Like ... window -- user provided regular expression

5.7 Pattern List Functions

There are four functions that a user may employ when dealing with the pattern list. The
ability to sort the list and to select a pattern for the Current Pattern field has previously
been discussed.

Y ou will note that at the top of the pattern list of Figure 8 is the Pattern Size field. The
pattern discovery algorithm uses this field to determine what the largest pattern size will
be. Increasing this number and pressing the Get Patterns button, at the bottom of the list,
will invoke the discovery process to search for patterns of larger sizes in the sequence up
to the specified size.

The Filter Options button provides choices for filter the list. Pressing this button displays

the Pattern Filter Options window, Figure 16. The filter provides a great deal of
flexibility in which pattern are shown.
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E%Pattem Filter Options
Enahle Filter

Contains Token: (A w

Contains String: |

Min Size: |1

Mazx Size: 100

Regular Expression: |
kin Stat: [0.00

hMax Stat: {100.00

5 4 Y

Close Window

Figure 16: The Pattern Filter Options window

5.8 Applications

5.8.1 Unattended Monitoring Data

We obtained a number of data sets from unattended monitoring systems fielded by the
International Security Programs Center. Most of the data sets were taken from a
simulated storage bunker here at Sandia. This bunker was instrumented with a door
switch, two motion detectors, two video cameras, and 10-20 “T-1" multi-sensor item
monitors. The T-1s can be attached to items of interest (i.e., containers) with afiber optic
seal and they report seal status, motion and temperature of the item. The T-1s have two
modes: normal and transportation. In normal mode, all of the programmed sensors are
active. In transportation mode, the motion sensor does not report, sSince motion is
expected in the transportation process. In order to provide monitoring of the item while it
is outside the domain of a monitoring system (i.e., during transportation), the T-1s buffer
the 100 most recent events. A buffer dump can be requested at any timethe T-1isin
transportation mode. The T-1s also report state-of-health information including battery
voltage. The monitored items can be logged in and out of the system. The monitoring
system periodically polls the T-1s and records State-of-Health information.

General Observations

Our initial analysis of data from the simulated storage magazine is based on asimple
time- flattened tokenization of the events based on the event types. The tokenization
scheme is shown in Table 8.

Table 8. Event tokenization scheme for initial analysis

Event Type Token | Description

Door Open A Facility door opened
Door Close B Facility door closed
Motion Start C T-1 Motion started
Occupied D V olumetric motion sensor
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active

Image Trigger E Cameratriggered to
capture animage

Unoccupied F Volumetric motion sensor
inactive

Seal Open G Fiber optic seal ona T-1
opened

Sedl Close H Fiber optic seal onaT-1
closed

T1 Login Started I Login process started

T1 Temperature J Temperature from T-1

T1 Into Transportation Mode K T-1placedin
transportation mode

T1 Out of Transportation Mode | L T-1 placed in normal
mode

T1 Logout Started M Logout process started

T1 SOH Poll Failure N T-1 failed to respond to
SOH poll request

T1 SOH Poll-All Start 0] T-1 poll sequence started

T1 SOH Poll-All Complete P T-1 poll sequence
completed

Scene Change Image Q Image triggered by scene
change filter

T1 Poll Failure S T-1failed to respond to
poll request

Missing Multiple Tamper T The counter for case

Events tamper events
incremented by more than
one event.

RF Interference U Indicator that RF
interference is present
(disrupts communications
to T-19)

No RF Interference \% Clear event for previous
event.

T1 Login Ended W Login datareceived at
DCC

T1 Login Cancelled X Login process cancelled

T1 Logout Cancelled Y Logout process cancelled

T1 Logout Ended Z Logout process completed

The data were tokenized and al repeating tokens were condensed to a single token of the
same value (e.g., JJJJJJ was replaced with J). The Pattern Discovery Tool was used to
iteratively analyze the data to see which patterns occurred frequently and how well those



patterns matched our understanding of the operation of the monitoring system. A typical
screen is shown in Figure 17.
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Figure 17: The main Sequence Pattern Discovery Tool screen for bunker analysis

The frequently occurring subsequences are sorted by frequency of occurrence. Note that
there are a number of two or three token sequences that occur frequently. We will
comment here on some of the frequent patterns.

The two-token patterns include FD (or DF), CE (or EC), DE, and BA. It turns out that
each of these represents an expected pattern in the event data. Note that DF occurs nearly
as many times as FD (1253 vs 1384). Often, the short patterns repeat many times, making
it difficult to decide which of the two possible combinations (e.g. FD or DF) is more
fundamental. Our observation is that the more frequent pattern is generally the more
fundamental pattern, but we still use domain knowledge to make the final decision. The
FD combination represents an Unoccupied, Occupied event sequence from a volumetric
motion sensor in the facility. The pairing is common because the motion sensor resets if it
detects no motion for some fixed time (e.g., 30 seconds) and retriggers if there is
additional motion. The FD pairing is more frequent because in some cases other events
related to the motion occur after the Occupied event.
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The CE and DE combinations indicate triggering of an image based on either a Motion
event (from one of the T-1 item monitors) or from a volumetric motion sensor. The
cameras in the facility are triggered to capture images when someone enters the facility,
moves about within the facility or when the item monitors indicate an item is being
handled in some way.

The BA combination represents a Door Close, Door Open event sequence. This sequence
is much more frequent than the AB sequence because the door generally remains open
when the facility is occupied and there are a number of events related to the activity in
the magazine between the open and close events.

OJP is afrequently occurring three-token sequence. This sequence consists of the T-1
SOH Poll-All Start, T1-Temperature, T1-SOH Poll- All Complete events and represents a
SOH poll of al the T-1sin the facility. The T-1 Temperature is only event from the SOH
message that is tokenized in this scheme. Recall that initially, repeating tokens were
condensed to a single token, so the Jin the OJP sequence actually represents many
temperature events. The large number of repeated poll events represents a period of
minimal activity at the facility in which the only events were the polls.

Once the poll events were identified, the OJP sequence was replaced with p for poll and
repeating poll events were condensed. In addition, the CE sequence was replaced with m
for motion and consolidated and the DF sequence was replaced with o for occupied and
consolidated. The result is shown below in Figure 18. The replacement and consolidation
is useful for allowing other patterns to become more apparent in the data.
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Figure 18: The updated main Sequence Pattern Discovery Tool screen. The screen
has been updated to reflect token replacement and consolidation described in the

text.

This analysis was intended as a smple validation test to show that patterns we expected

to find in the data (e.g., polls, image triggers, pairing of events from sensors like the

doors and motion sensors) could be found by this approach and would appear to be
significant based on frequency measures.

It became clear at this point that there were at least three classes of events in the storage

facility that would be worth pursuing independently: poll events, loging/logouts and

other activity. Each set was tokenized separately to look at more specific questions. A
partial analysis of login datais given below.

Login Process Analysis
We next used the Pattern Discovery Tool to identify patterns in the login process. In other
analyses of the storage facility data we had observed a number of variationsin the

expected sequence of events in these processes, and we wished to identify all of the
variations. The login process is explained below:

1.
2.
3.

Initially the T-1 is in transportation mode.

A bar code reader is used to indicate that a login is beginning.

The bar code reader is then used to scan the T-1, the container of interest, and the

container’s location information.

The information is transmitted to the monitoring system via RF communications.
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5. The monitoring system requests a buffer dump from the T-1 and records the
events.

6. The T-1isswitched out of transportation mode.

7. Logins may be cancelled using an appropriate bar code with the bar code scanner

We tokenized the data using a time- flattened scheme based on the event types associated
with T-1s and logins. These events are listed in Table 9.

Table 9: Event tokenization scheme for login process analysis

Event Token | Comment

Case Tamper Active A Indicates T-1 case has been tampered
with

Case Tamper Inactive B Indicates T-1 case tamper indicator is
inits normal state

Missing Event C T-1 Event counter incremented 2 or
more above previous value. Indicates
possible missed event froma T-1

Sedl Close D Fiber optic seal on a T-1 closed

Seal Open E Fiber optic seal on a T-1 opened

T1 Buffer Dump End F T-1 message indicating end of a buffer
dump

T1 Buffer Dump Fall G DCC message indicating T-1 buffer
dump did not occur

T1 Buffer Dump Poll Failure H DCC message indicating T-1 did not
respond to poll request

T1 Buffer Dump Start I T-1 message beginning a buffer dump

T1 Buffer Read Done J DCC signals completion of T-1 buffer
read

T1 Buffer Read Start K DCC requests T-1 buffer dump

T1 Buffer Read Stop L DCC signals completion of T-1 buffer
read

T1 Into Transportation Mode M T-1 placed in transportation mode

T1 Login Cancelled N L ogin process cancelled

T1 Login Ended O Login datareceived at DCC

T1 Login Started P Login process started

T1 Logout Cancelled Q L ogout process cancelled

T1 Logout Ended R L ogout process completed

T1 Logout Started S Logout process started

T1 Out of Transportation Mode | T T-1 placed in norma mode

Unknown Event U The T-1 event counter indicates at |east
one event occurred, but it is not
possible to infer what caused the event
from the state of the T-1 sensors.
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The analysis produced a number of interesting observations. First, there was alarge
number of Buffer Dump End events — 14,538 of the 15434 events. Buffer Dump End
events are recorded by the T-1 at the end of each buffer dump and are put in the buffer. If
aT-1isre-used many times, it is possible to have a number of Buffer Dump End events
in agiven buffer. We decided that the number of Buffer Dump End messages was not an
important distinguishing characteristic and consolidated any repeating sequencesinto a
single event.

Logins normally begin with a fixed sequence of events: Login Start, Login End, Buffer
Read Start, Buffer Dump Start. These events are tokenized as POIK. Logins normally end
with another fixed sequence of events. Buffer Dump End, Buffer Read Stop. These
events are tokenized as FL. In between, there may be any number of other T-1 events (M,
A, B,U,T,D,E, C)inany order. A few example normal login sequences are shown in
Table 10. The expected initial and final sequences are separated from the middle
sequence to highlight the similarities and differences in the patterns.

Table 10: Frequency of selected normal login patterns

Pattern Frequency
POIK MABM FL 8
POIK MABMBM FL 2
POIK MAMBAB FL 5
POIK MAMB FL 6

There were 67 Login Started events. Of these, the frequency and interpretation of some of
the more common patterns are given in Table 11. The asterisk is used to indicate any
number of T-1 eventsin any order. “Normal” login events do occur frequently, but there
are anumber of deviations. As shown in the second row, one common deviation is that
there is some problem completing the buffer dump. In these event sequences, the events
between the Buffer Read Start and the Buffer Dump Poll Failure message usudly relate
to additional attempts to read the buffer rather than actual sensor events like Seal Open or
Seal Close. Another common deviation from the normal login sequence is canceling the
login as shown in the third and fourth rows.

Table 11: Frequency of selected login patterns

Pattern Frequency Interpretation

POIK * FL 31 Normal Login

POI * H 5 Unable to dump buffer

PN (login start, login 8 Login Cancelled

cancelled

P* N 3 Abnormal login
cancelled

Categorizing the remaining login attempts will require more work. A large number of the
remaining attempts show a disruption in the initial sequence — that is, one or more events
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inserted between the P and O, the O and I, and/or the | and K. In addition, there appear to
be occasions where logins overlapped. An example of thisis givenbelow:

POIPKmBM FL OIKmBMFL
where the apparently overlapping sequences are distinguished by bold and italic text and
the “m” indicates some number of T1 Into Transportation Mode events. It is possible the
disruption in the initial sequence is due to intermingling of events from different T-1in
the monitoring system. However, the apparent overlap of login sequences seems very odd
based on our knowledge of operational procedures at this test bed. We need to go back to
the raw data and possibly modify the tokenization scheme to clarify these issues.

5.8.2 Network Intrusion Detection

Computer security personnel tasked with the network intrusion detection problem face
many similar issues in mining sequences of eventsin data. While there is no formal data
mining project in place, members of the Computer Security group at Sandia National
Laboratories are working on methods to identify and detect patterns in network traffic
that indicate network intrusion or other suspicious activity. Commercial network
monitoring tools do provide some assistance to this end, but they generally lack the
flexibility needed to develop proactive early detection schemes. Most of these tools are
based on the use of signatures (predefined data sequences) which are scanned for in
network traffic and data stores. Such tools are limited to pattern detection, that is, the
identification of patterns in datathat have already been predefined, rather than pattern
discovery.

What is desired is a tool to discover new patterns that deviate from normal expected
behavior so that intrusion attempts and other unauthorized activity can be detected, even
though a pre-existing pattern (signature) for that activity was not previously known [34].
For example, the Code Red worm [35] recently infected many computer systems
throughout the world. This worm spreads by generating permutations on a given network
address to discover new networks to attack. This behavior can be characterized by the
type and quantity of network traffic that it generates. A pattern discovery tool that is able
to identify such anomalies in network traffic would be a valuable asset in detecting new
generations of worms and viruses that propagate in asimilar way. With such atool, new
malicious activity could be detected early, before it propagates within the organization
and causes significant damage.

A short demonstration of the Pattern Discovery Tool was well received when shown to
Computer Security personnel at Sandia. Of particular interest was the tool’ s ability to
detect and isolate new patterns found in a user-defined token sequence. Using asimple
dataset, we were able to isolate an interesting set of communications between aweb
server and afirewall, using the statistical measures and filtering capabilities of the tool.
This demonstration also led to suggestions of how to extend the tool to facilitate the
ability to drill-down into underlying data by selecting a token or sequence of tokens. For
example, informationfields contained in the headers of packets in network traffic are not
always needed or used. Unauthorized communication can take place by sending packets
with benign payload data and encoding the real message in the unused header fields of
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the packets. Because the header fields are relatively small, even a modest message
communicated in this fashion would require many packets to encode. The Pattern
Discovery Tool could be used to identify network traffic that follows this pattern. Once a
pattern is found, then a useful ability would be to examine the packet headers and data
associated with the pattern to determine if any anomalies exist. Going one step further,
all occurrences of the pattern could be isolated in the tool and re-tokenized based on
some field in the associated data, perhaps from an attached database. Then patternsin
this new context could be found to further process the data and gain insights into the true
nature of the network traffic activity. A key concept of the Pattern Discovery Tool is that
the user has direct control of the type and amount of information displayed.

5.8.3 Robot Time Sequences

For the third example application, we obtained data from another project that is
developing cognitive models for decision support systems [36]. The data consisted of 42
data sets, each being one of six runs for seven different robots. The data sets are
sequences that are periodic snapshots of the states of the robots as they are performing
some task. Each record in the file represents the state at a given time. Thefirst field isa
time value starting at 0 and incrementing at .05 time units. The remainder of the record is
avector of 40 real values presumably representing the robot's state.

Each row was represented as an object where equality between two similar objectsis
defined as equality of every element in the vector, thus ignoring the time field for
equivalence. The first 8 records from the first run of robot 7 follow:

01117003500000000000000000000000000000000000
0.051117.01003500000000000000000000000000000000000
0.110.99917.0200.13500000000000000000000000000000000000
0.1510.99417.069700.13500000000000000000000000000000000000
0.210.99417.069700.23500000000000000000000000000000000000
0.2510.984117.118700.23500000000000000000000000000000000000
0.310.984117.118700.33500000000000000000000000000000000000
0.3510.969317.166500.3350.10.10.110.10.10.10.110.110.10.111110.1110.10.10.10.10.10.10.110.10.10.10.10.10.11

When the pattern discovery program was executed against a single run or data set no
frequent patterns were found using this equivalence measure. (A frequent pattern is
defined as a subsequence that repeats at least once.)

It appears that each of the six runs for a given robot is atraining run for that robot and
that each robot is trying to accomplish the same task. Therefore, al of the 42 data sets
were concatenated into a single data set and run through the discovery process. Enough
equivalent patterns across the combined data set were found to indicate commonality
between the various runs; there were enough differences to indicate the runs were unique.

Table 12 summarizes the relationship between record number and run for a given robot.
Table 13 summarizes the patterns and frequency of occurrence.

Table 12: Runswithin the data set

Record Record Run
Start End
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1 403 1
404 806 2
807 1209 3
1210 1612 4
1613 2015 5
2016 2419 6

Table 13: Frequent patterns found acrossrobot runs

Pattern # | Starting Records Pattern Length
1 1, 1613 263
2 1, 404, 807, 1210, 1613, 2016 | 7

3 1, 807, 1613 55
4 1, 807, 1613, 2016 26
5 232, 1844, 2247 32
6 232, 2247 172
7 308, 1517, 2323 75
8 359, 1568, 1971, 2374 24
9 359, 1971 52
10 359, 1971, 2374 45
11 436, 2048 193
12 468, 871, 2080 140
13 597, 1000, 1403, 2209 11
14 597, 1403 105
15 597, 1403, 2209 32

Analysis of the data shows that all the runs are exactly the same for the first 7 records and
thisis the only sequence in common among all the runs. Two runs end the same. When
there is any commonality between two or more runs they occur at the exact same point
into the run.

At this point, we do not have sufficient information to examine the significance of the

discovered patterns, but this example was an excellent test of the ability of the pattern
detector to discover patterns in a sequence of arbitrary object representations.
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6 Summary and Future Work

The data we are interested in analyzing is a mixture of analog (i.e., continuous- valued
data) and discrete events. As aresult, we explored techniques for pattern matching and
pattern discovery in both continuous and discrete events. For pattern matching in
continuous data, we studied the use of Dynamic Time Warping (DTW) [6][7][8][9][10]
or Hidden Markov Models. We had a limited set of analog data to work with for this
aspect of the project and were not able to proceed beyond the initia investigatory steps.
However, based on our analysis of the DTW and HMM agorithms, we would focus
future efforts on Derivative Dynamic Time Warping (DDTW).

In the second half of the project, we explored techniques for pattern matching and pattern
discovery in discrete event data. We developed a Pattern Discovery Tool based on
adaptations of the A-priori [11] and GSP (Generalized Sequential Pattern mining) [12]
algorithms. We then used the tool on three different application areas — unattended
monitoring system data from a storage magazine, network intrusion detection, and
analysis of robot training data.

As described earlier, the tool is prototype; even so it demonstrates several capabilities.
First and foremost it demonstrates the ability to discover patternsin a symbol sequence
and provided a visual mechanism to understand those findings. Second it demonstrates
the ability to detect subsequences that are similar to a baseline pattern and provide a
metric of that similarity.

The concepts behind the tool certainly exhibit promise and there are a number of
enhancements suggested by individuals who have seen demonstrations of the tool, as well
as possible uses. The tool shows promise in analyzing network intrusion data, bunker
sensor data, and state sequences from robot test runs. Other possibilities may include
nontemporal data such as textual patterns or genome sequences.

Some possible enhancements are to allow for event tokens of more than a single token in
length or possibly variable length token sets. Also the ability to derive patterns from a
sequence data set rather than just a token sequence would prove very useful. This
functionality could include the ability to drill-down into the supporting data represented
by the token. For example a sequence of TCP/IP packet headers could be shown as either
tokens which represent host or destination addresses, or as the list of addresses
themselves. From any individual element in the sequence a user could display the
underlying packet data. The analyst could direct that certain el ements be hidden rather
than edited out. From the underlying data structure different elements could be used as
the display elements for visualization. For such a mechanism to work properly and still
be able to find similar subsequences a method like regular expressions would need to be
devised which operates on arbitrary data structures in preference to single letter tokens. A
state machine engine may prove useful for achieving this. Greater use of highlighting,
coloring and styles could be employed to highlight different types of patterns, overlaying
patterns, etc.
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8 Appendix: String Similarity Poll

Character String Smilarity Pall

To the right of each string pair below, write a number between 1 and 10 that indicates

how similar you think the two stringsare. A 1 indicates very little similarity; while a 10

indicates that the two strings are very similar. Use your own metric for determining

similarity.
String Pair Similarity | String Pair Similarity
ABCD TVEUDHSACL
DEFG EUDSA
ABCD HQWEI SFEI SWHQWEI SFEI SW
USDABCD DO UBCPOWN OBYDERUI VYBEWS
TWEUDHSACL ABCD
TWEEDHESAL DCBA
HQWEI SFEI SW H JK
HQWEI SFEI SWHQWEI SFEI SW HIKI
AXBXCXDXEX TWEUDHSACL
ABCDE TEDSOL
SG TBAFGVAT ABCD
SGTBFGMT ABCCD
ABCD TVWEUDHSACOL
ABKD QWEUDHSAOP
ABCDE HQWEI SFEI SW
AABBCCDDEE HQWEI SFEL MNOP
QOUA TVWEUDHSACOL
ZXCM HSAOL TWEUD
M3 THWPA AVBOCZDPE
SG TBAFGVAT ABCDE
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